This Week In Machine Learning & Artificial Intelligence (ai) Podcast

  • Autor: Vários
  • Narrador: Vários
  • Editor: Podcast
  • Duración: 588:39:49
  • Mas informaciones

Informações:

Sinopsis

This Week in Machine Learning & AI is the most popular podcast of its kind. TWiML & AI caters to a highly-targeted audience of machine learning & AI enthusiasts. They are data scientists, developers, founders, CTOs, engineers, architects, IT & product leaders, as well as tech-savvy business leaders. These creators, builders, makers and influencers value TWiML as an authentic, trusted and insightful guide to all thats interesting and important in the world of machine learning and AI.Technologies covered include: machine learning, artificial intelligence, deep learning, natural language processing, neural networks, analytics, deep learning and more.

Episodios

  • Trends in Deep Learning with Jeremy Howard - TWiML Talk #214

    24/12/2018 Duración: 01h08min

    In this episode of our AI Rewind series, we’re bringing back one of your favorite guests of the year, Jeremy Howard, founder and researcher at Fast.ai. Jeremy joins us to discuss trends in Deep Learning in 2018 and beyond. We cover many of the papers, tools and techniques that have contributed to making deep learning more accessible than ever to so many developers and data scientists.

  • Training Large-Scale Deep Nets with RL with Nando de Freitas - TWiML Talk #213

    20/12/2018 Duración: 55min

    Today we close out both our NeurIPS series joined by Nando de Freitas, Team Lead & Principal Scientist at Deepmind. In our conversation, we explore his interest in understanding the brain and working towards artificial general intelligence. In particular, we dig into a couple of his team’s NeurIPS papers: “Playing hard exploration games by watching YouTube,” and “One-Shot high-fidelity imitation: Training large-scale deep nets with RL.”

  • Making Algorithms Trustworthy with David Spiegelhalter - TWiML Talk #212

    20/12/2018 Duración: 23min

    Today we’re joined by David Spiegelhalter, Chair of Winton Center for Risk and Evidence Communication at Cambridge University and President of the Royal Statistical Society. David, an invited speaker at NeurIPS, presented on “Making Algorithms Trustworthy: What Can Statistical Science Contribute to Transparency, Explanation and Validation?”. In our conversation, we explore the nuanced difference between being trusted and being trustworthy, and its implications for those building AI systems.

  • Designing Computer Systems for Software with Kunle Olukotun - TWiML Talk #211

    18/12/2018 Duración: 55min

    Today we’re joined by Kunle Olukotun, Professor in the department of EE and CS at Stanford University, and Chief Technologist at Sambanova Systems. Kunle was an invited speaker at NeurIPS this year, presenting on “Designing Computer Systems for Software 2.0.” In our conversation, we discuss various aspects of designing hardware systems for machine and deep learning, touching on multicore processor design, domain specific languages, and graph-based hardware. This was a fun one!

  • Operationalizing Ethical AI with Kathryn Hume - TWiML Talk #210

    14/12/2018 Duración: 53min

    Today we conclude our Trust in AI series with this conversation with Kathryn Hume, VP of Strategy at Integrate AI. We discuss her newly released white paper “Responsible AI in the Consumer Enterprise,” which details a framework for ethical AI deployment in e-commerce companies and other consumer-facing enterprises. We look at the structure of the ethical framework she proposes, and some of the many questions that need to be considered when deploying AI in an ethical manner.

  • Approaches to Fairness in Machine Learning with Richard Zemel - TWiML Talk #209

    12/12/2018 Duración: 45min

    Today we continue our exploration of Trust in AI with this interview with Richard Zemel, Professor in the department of Computer Science at the University of Toronto and Research Director at Vector Institute. In our conversation, Rich describes some of his work on fairness in machine learning algorithms, including how he defines both group and individual fairness and his group’s recent NeurIPS poster, “Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer.”

  • Trust and AI with Parinaz Sobhani - TWiML Talk #208

    11/12/2018 Duración: 46min

    In today’s episode we’re joined by Parinaz Sobhani, Director of Machine Learning at Georgian Partners. In our conversation, Parinaz and I discuss some of the main issues falling under the “trust” umbrella, such as transparency, fairness and accountability. We also explore some of the trust-related projects she and her team at Georgian are working on, as well as some of the interesting trust and privacy papers coming out of the NeurIPS conference.

  • Unbiased Learning from Biased User Feedback with Thorsten Joachims - TWiML Talk #207

    07/12/2018 Duración: 40min

    In the final episode of our re:Invent series, we're joined by Thorsten Joachims, Professor in the Department of Computer Science at Cornell University. We discuss his presentation “Unbiased Learning from Biased User Feedback,” looking at some of the inherent and introduced biases in recommender systems, and the ways to avoid them. We also discuss how inference techniques can be used to make learning algorithms more robust to bias, and how these can be enabled with the correct type of logging policies.

  • Language Parsing and Character Mining with Jinho Choi - TWiML Talk #206

    05/12/2018 Duración: 47min

    Today we’re joined by Jinho Choi, assistant professor of computer science at Emory University. Jinho presented at the conference on ELIT, their cloud-based NLP platform. In our conversation, we discuss some of the key NLP challenges that Jinho and his group are tackling, including language parsing and character mining. We also discuss their vision for ELIT, which is to make it easy for researchers to develop, access, and deploying cutting-edge NLP tools models on the cloud.

  • re:Invent Roundup Roundtable 2018 with Dave McCrory and Val Bercovici - TWiML Talk #205

    03/12/2018 Duración: 01h07min

    I’m excited to present our second annual re:Invent Roundtable Roundup. This year I’m joined by Dave McCrory, VP of Software Engineering at Wise.io at GE Digital, and Val Bercovici, Founder and CEO of Pencil Data. If you missed the news coming out of re:Invent, we cover all of AWS’ most important ML and AI announcements, including SageMaker Ground Truth, Reinforcement Learning, DeepRacer, Inferentia and Elastic Inference, ML Marketplace and much more. For the show notes visit https://twimlai.com/ta

  • Knowledge Graphs and Expert Augmentation with Marisa Boston - TWiML Talk #204

    29/11/2018 Duración: 46min

    Today we’re joined by Marisa Boston, Director of Cognitive Technology in KPMG’s Cognitive Automation Lab. We caught up to discuss some of the ways that KPMG is using AI to build tools that help augment the knowledge of their teams of professionals. We discuss knowledge graphs and how they can be used to map out and relate various concepts and how they use these in conjunction with NLP tools to create insight engines. We also look at tools that curate and contextualize news and other text-based data sour

  • ML/DL for Non-Stationary Time Series Analysis in Financial Markets and Beyond with Stuart Reid - TWiML Talk #203

    26/11/2018 Duración: 58min

    Today, we’re joined by Stuart Reid, Chief Scientist at NMRQL Research. NMRQL is an investment management firm that uses ML algorithms to make adaptive, unbiased, scalable, and testable trading decisions for its funds. In our conversation, Stuart and I dig into the way NMRQL uses ML and DL models to support the firm’s investment decisions. We focus on techniques for modeling non-stationary time-series, stationary vs non-stationary time-series, and challenges of building models using financial data.

  • Industrializing Machine Learning at Shell with Daniel Jeavons - TWiML Talk #202

    21/11/2018 Duración: 45min

    In this episode of our AI Platforms series, we’re joined by Daniel Jeavons, General Manager of Data Science at Shell. In our conversation, we explore the evolution of analytics and data science at Shell, discussing IoT-related applications and issues, such as inference at the edge, federated ML, and digital twins, all key considerations for the way they apply ML. We also talk about the data science process at Shell and the importance of platform technologies to the company as a whole.

  • Resurrecting a Recommendations Platform at Comcast with Leemay Nassery - TWiML Talk #201

    19/11/2018 Duración: 47min

    In this episode of our AI Platforms series, we’re joined by Leemay Nassery, Senior Engineering Manager and head of the recommendations team at Comcast. In our conversation, Leemay and I discuss just how she and her team resurrected the Xfinity X1 recommendations platform, including the rebuilding the data pipeline, the machine learning process, and the deployment and training of their updated models. We also touch on the importance of A-B testing and maintaining their rebuilt infrastructure.

  • Productive Machine Learning at LinkedIn with Bee-Chung Chen - TWiML Talk #200

    15/11/2018 Duración: 47min

    In this episode of our AI Platforms series, we’re joined by Bee-Chung Chen, Principal Staff Engineer and Applied Researcher at LinkedIn. Bee-Chung and I caught up to discuss LinkedIn’s internal AI automation platform, Pro-ML. Bee-Chung breaks down some of the major pieces of the pipeline, LinkedIn’s experience bringing Pro-ML to the company's developers and the role the LinkedIn AI Academy plays in helping them get up to speed. For the complete show notes, visit https://twimlai.com/talk/200.

  • Scaling Deep Learning on Kubernetes at OpenAI with Christopher Berner - TWiML Talk #199

    12/11/2018 Duración: 49min

    In this episode of our AI Platforms series we’re joined by OpenAI’s Head of Infrastructure, Christopher Berner. In our conversation, we discuss the evolution of OpenAI’s deep learning platform, the core principles which have guided that evolution, and its current architecture. We dig deep into their use of Kubernetes and discuss various ecosystem players and projects that support running deep learning at scale on the open source project.

  • Bighead: Airbnb's Machine Learning Platform with Atul Kale - TWiML Talk #198

    08/11/2018 Duración: 49min

    In this episode of our AI Platforms series, we’re joined by Atul Kale, Engineering Manager on the machine learning infrastructure team at Airbnb. In our conversation, we discuss Airbnb’s internal machine learning platform, Bighead. Atul outlines the ML lifecycle at Airbnb and how the various components of Bighead support it. We then dig into the major components of Bighead, some of Atul’s best practices for scaling machine learning, and a special announcement that Atul and his team made at Strata.

  • Facebook's FBLearner Platform with Aditya Kalro - TWiML Talk #197

    06/11/2018 Duración: 38min

    In the kickoff episode of our AI Platforms series, we’re joined by Aditya Kalro, Engineering Manager at Facebook, to discuss their internal machine learning platform FBLearner Flow. FBLearner Flow is the workflow management platform at the heart of the Facebook ML engineering ecosystem. We discuss the history and development of the platform, as well as its functionality and its evolution from an initial focus on model training to supporting the entire ML lifecycle at Facebook.

  • Geometric Statistics in Machine Learning w/ geomstats with Nina Miolane - TWiML Talk #196

    01/11/2018 Duración: 43min

    In this episode we’re joined by Nina Miolane, researcher and lecturer at Stanford University. Nina and I spoke about her work in the field of geometric statistics in ML, specifically the application of Riemannian geometry, which is the study of curved surfaces, to ML. In our discussion we review the differences between Riemannian and Euclidean geometry in theory and her new Geomstats project, which is a python package that simplifies computations and statistics on manifolds with geometric structures.

  • Milestones in Neural Natural Language Processing with Sebastian Ruder - TWiML Talk #195

    29/10/2018 Duración: 01h01min

    In this episode, we’re joined by Sebastian Ruder, PhD student studying NLP at National University of Ireland and Research Scientist at text analysis startup Aylien. We discuss recent milestones in neural NLP, including multi-task learning and pretrained language models. We also look at the use of attention-based models, Tree RNNs and LSTMs, and memory-based networks. Finally, Sebastian walks us through his ULMFit paper, which he co-authored with Jeremy Howard of fast.ai who I interviewed in episode 186.

página 28 de 39