This Week In Machine Learning & Artificial Intelligence (ai) Podcast

  • Autor: Vários
  • Narrador: Vários
  • Editor: Podcast
  • Duración: 588:39:49
  • Mas informaciones

Informações:

Sinopsis

This Week in Machine Learning & AI is the most popular podcast of its kind. TWiML & AI caters to a highly-targeted audience of machine learning & AI enthusiasts. They are data scientists, developers, founders, CTOs, engineers, architects, IT & product leaders, as well as tech-savvy business leaders. These creators, builders, makers and influencers value TWiML as an authentic, trusted and insightful guide to all thats interesting and important in the world of machine learning and AI.Technologies covered include: machine learning, artificial intelligence, deep learning, natural language processing, neural networks, analytics, deep learning and more.

Episodios

  • Intel Nervana Devcloud with Naveen Rao & Scott Apeland - TWiML Talk #51

    06/10/2017 Duración: 37min

    In this episode, I talk to Naveen Rao, VP and GM of Intel’s AI Products Group, and Scott Apeland, director of Intel’s Developer Network. It's been a few months since we last spoke to Naveen, so he gives us a quick update on what Intel’s been up to and we discuss his perspective on some recent developments in the AI ecosystem. Scott and I dig into Intel Nervana’s new DevCloud offering, which was announced at the conference. We also discuss the Intel Nervana AI Academy, a new portal offering hands-on learning tools and other resources for various aspects of machine learning and AI. The notes for this show can be found at twimlai.com/talk/51

  • ML Use Cases at Think Big Analytics with Mo Patel and Laura Frølich - TWiML Talk #54

    06/10/2017 Duración: 45min

    The show you’re about to hear is part of a series of shows recorded in San Francisco at the Artificial Intelligence Conference. This time around, I speak with Mo Patel, practice director of AI & deep learning and Laura Frølich, data scientist, of Think Big Analytics. Mo and Laura joined me at the AI conference after their session on “Training vision models with public transportation datasets.” We talked over a bunch of use cases they’ve worked on involving image analysis and deep learning, including an assisted driving system. We also talk through a bunch of practical challenges faced when working on real machine learning problems, like feature detection, data augmentation, and training data. The notes for this show can be found at twimlai.com/talk/54

  • Ray: A Distributed Computing Platform for Reinforcement Learning with Ion Stoica - TWiML Talk #55

    05/10/2017 Duración: 28min

    The show you’re about to hear is part of a series of shows recorded in San Francisco at the Artificial Intelligence Conference. In this episode, I talk with Ion Stoica, professor of computer science & director of the RISE Lab at UC Berkeley. Ion joined us after he gave his talk “Building reinforcement learning applications with Ray.” We dive into Ray, a new distributed computing platform for RL, as well as RL generally, along with some of the other interesting projects RISE Lab is working on, like Clipper & Tegra. This was a pretty interesting talk. Enjoy! The notes for this show can be found at twimlai.com/talk/55

  • Topological Data Analysis with Gunnar Carlsson - TWiML Talk #53

    03/10/2017 Duración: 33min

    The show you’re about to hear is part of a series of shows recorded in San Francisco at the Artificial Intelligence Conference. My guest for this show is Gunnar Carlsson, professor emeritus of mathematics at Stanford University and president and co-founder of machine learning startup Ayasdi. Gunnar joined me after his session at the conference on “Topological data analysis as a framework for machine intelligence.” In our talk, we take a super deep dive on the mathematical underpinnings of TDA and its practical application through software. Nerd Alert! The notes for this show can be found at twimlai.com/talk/53

  • Bayesian Optimization for Hyperparameter Tuning with Scott Clark - TWiML Talk #50

    02/10/2017 Duración: 47min

    As you all know, a few weeks ago, I spent some time in SF at the Artificial Intelligence Conference. While I was there, I had just enough time to sneak away and catch up with Scott Clark, Co-Founder and CEO of Sigopt, a company whose software is focused on automatically tuning your model’s parameters through Bayesian optimization. We dive pretty deeply into that process through the course of this discussion, while hitting on topics like Exploration vs Exploitation, Bayesian Regression, Heterogeneous Configuration Models and Covariance Kernels. I had a great time and learned a ton, but be forewarned, this is most definitely a Nerd Alert show! Notes for this show can be found at twimlai.com/talk/50

  • Symbolic and Sub-Symbolic Natural Language Processing with Jonathan Mugan - TWiML Talk #49

    25/09/2017 Duración: 43min

    Like last week’s interview with Bruno Goncalves, this week’s interview was also recorded at the last O’Reilly AI Conference back in New York in June. Also like last week’s show, this week’s is also focused on Natural Language Processing and I think you’ll enjoy it. I’m joined by Jonathan Mugan, co-founder and CEO of Deep Grammar, a company that is building a grammar checker using deep learning and what they call deep symbolic processing. This interview is a great complement to my conversation with Bruno, and we cover a variety of topics from both the sub-symbolic and symbolic schools of NLP, such as attention mechanisms like sequence to sequence, and ontological approaches like WordNet, synsets, FrameNet, and SUMO. You can find the notes for this show at twimlai.com/talk/49

  • Word2Vec & Friends with Bruno Gonçalves - TWiML Talk #48

    19/09/2017 Duración: 32min

    This week i'm bringing you an interview from Bruno Goncalves, a Moore-Sloan Data Science Fellow at NYU. As you’ll hear in the interview, Bruno is a longtime listener of the podcast. We were able to connect at the NY AI conference back in June after I noted on a previous show that I was interested in learning more about word2vec. Bruno graciously agreed to come on the show and walk us through an overview of word embeddings, word2vec and related ideas. He provides a great overview of not only word2vec, related NLP concepts such as Skip Gram, Continuous Bag of Words, Node2Vec and TFIDF. Notes for this show can be found at twimlai.com/talk/48.

  • Evolutionary Algorithms in Machine Learning with Risto Miikkulainen - TWiML Talk #47

    11/09/2017 Duración: 58min

    My guest this week is Risto Miikkulainen, professor of computer science at UT-Austin and vice president of Research at Sentient Technologies. Risto came locked and loaded to discuss a topic that we've received a ton of requests for -- evolutionary algorithms. During our talk we discuss some of the things Sentient is working on in the financial services and retail fields, and we dig into the technology behind it, evolutionary algorithms, which is also the focus of Risto’s research at UT. I really enjoyed this interview and learned a ton, and I’m sure you will too! Notes for this show can be found at twimlai.com/talk/47.

  • Agile Machine Learning with Jennifer Prendki - TWiML Talk #46

    05/09/2017 Duración: 48min

    My guest this week is Jennifer Prendki. That name might sound familiar, as she was one of the great speakers from my Future of Data Summit back in May. At the time, Jennifer was senior data science manager and principal data scientist at Walmart Labs, but she's since moved on to become head of data science at Atlassian. Back at the summit, Jennifer gave an awesome talk on what she calls Data Mixology, the slides for which you can find on the show notes page. My conversation with Jennifer begins with a recap of that talk. After that, we shift our focus to some of the practices she helped develop and implement at Walmart around the measurement and management of machine learning models in production, and more generally, building agile processes and teams for machine learning. The notes for this show can be found at twimlai.com/talk/46

  • LSTMs, Plus a Deep Learning History Lesson with Jürgen Schmidhuber - TWiML Talk #44

    28/08/2017 Duración: 01h03min

    This week we have a very special interview to share with you! Those of you who’ve been receiving my newsletter for a while might remember that while in Switzerland last month, I had the pleasure of interviewing Jurgen Schmidhuber, in his lab IDSIA, which is the Dalle Molle Institute for Artificial Intelligence Research in Lugano, Switzerland, where he serves as Scientific Director. In addition to his role at IDSIA, Jurgen is also Co-Founder and Chief Scientist of NNaisense, a company that is using AI to build large-scale neural network solutions for “superhuman perception and intelligent automation.” Jurgen is an interesting, accomplished and in some circles controversial figure in the AI community and we covered a lot of very interesting ground in our discussion, so much so that I couldn't truly unpack it all until I had a chance to sit with it after the fact. We talked a bunch about his work on neural networks, especially LSTM’s, or Long Short-Term Memory networks, which are a key innovation behind many of

  • Machine Teaching for Better Machine Learning with Mark Hammond - TWiML Talk #43

    21/08/2017 Duración: 01h05min

    Today’s show, which concludes the first season of the Industrial AI Series, features my interview with Bonsai co-founder and CEO Mark Hammond. I sat down with Mark at Bonsai HQ a few weeks ago and we had a great discussion while I was there. We touched on a ton of subjects throughout this talk, including his starting point in Artificial intelligence, how Bonsai came about & more. Mark also describes the role of what he calls “machine teaching” in delivering practical machine learning solutions, particularly for enterprise or industrial AI use cases. This was one of my favorite conversations, I know you’ll enjoy it! The notes for this show can be found at twimlai.com/talk/43

  • Marrying Physics-Based and Data-Driven ML Models with Josh Bloom - TWiML Talk #42

    14/08/2017 Duración: 52min

    Recently I had a chance to catch up with a friend and friend of the show, Josh Bloom, vice president of data & analytics at GE Digital. If you’ve been listening for a while, you already know that Josh was on the show around this time last year, just prior to the acquisition of his company Wise.io by GE Digital. It was great to catch up with Josh on his journey within GE, and the work his team is doing around Industrial AI, now that they’re part of the one of the world’s biggest industrial companies. We talk about some really interesting things in this show, including how his team is using autoencoders to create training datasets, and how they incorporate knowledge of physics and physical systems into their machine learning models. The notes for this show can be found at twimlai.com/talk/42.

  • Cognitive Biases in Data Science with Drew Conway - TWiML Talk #39

    05/08/2017 Duración: 34min

    This show features my interview with Drew Conway, whose Wrangle keynote could have been called “Confessions of a CIA Data Scientist.” The focus of our interview, and of Drew’s presentation, is an interesting set of observations he makes about the role of cognitive biases in data science. If your work involves making decisions or influencing behavior based on data-driven analysis--and it probably does or will--you’re going to want to hear what he has to say. A quick note before we dive in: As is the case with my other field recordings, there’s a bit of unavoidable background noise in this interview. Sorry about that! The show notes for this episode can be found at https://twimlai.com/talk/39

  • Data Pipelines at Zymergen with Airflow with Erin Shellman - TWiML Talk #41

    05/08/2017 Duración: 35min

    The show you’re listening to features my interview with Erin Shellman. Erin is a statistician and data science manager with Zymergen, a company using robots and machine learning to engineer better microbes. If you’re wondering what exactly that means, I was too, and we talk about it in the interview. Our conversation focuses on Zymergen’s use of Apache Airflow, an open-source data management platform originating at Airbnb, that Erin and her team uses to create reliable, repeatable data pipelines for its machine learning applications. A quick note before we dive in: As is the case with my other field recordings, there’s a bit of unavoidable background noise in this interview. Sorry about that! The show notes for this episode can be found at https://twimlai.com/talk/41

  • Web Scale Engineering for Machine Learning with Sharath Rao - TWiML Talk #40

    04/08/2017 Duración: 31min

    The show you’re about to listen to features my interview with Sharath Rao, Tech Lead Manager & Machine Learning Engineer at Instacart I reached out to Sharath about being on the show and was blown away when he replied that not only had he heard about the show, but that he was a fan and an avid listener. My conversation with him digs into some of the practical lessons and patterns he’s learned by building production-ready, web-scale data products based on machine learning models, including the search and recommendation systems at Instacart. We also spend a few minutes discussing our upcoming TWiML Paper Reading Meetup! A quick note before we dive in: As is the case with my other field recordings, there’s a bit of unavoidable background noise in this interview. Sorry about that! The show notes for this episode can be found at https://twimlai.com/talk/40.

  • Deep Learning for Warehouse Operations with Calvin Seward - TWiML Talk #38

    31/07/2017 Duración: 46min

    This week, I’m happy to bring you my interview with Calvin Seward, a research scientist with Berlin, Germany based Zalando. While our American listeners might not know the name Zalando, they’re one of the largest e-commerce companies in Europe with a focus on fashion and shoes. Calvin is a research scientist there, while also pursuing his doctorate studies at Johannes Kepler University in Linz, Austria. Our discussion, which continues our Industrial AI series, focuses on how Calvin’s team tackled an interesting warehouse optimization problem using deep learning. Calvin also gives his thoughts on the distinction between AI and ML, and the four P’s that he focuses on: Prestige, Products, Paper, and Patents. The notes for this show can be found at https://twimlai.com/talk/38.

  • Deep Robotic Learning with Sergey Levine - TWiML Talk #37

    24/07/2017 Duración: 46min

    This week we continue our Industrial AI series with Sergey Levine, an Assistant Professor at UC Berkeley whose research focus is Deep Robotic Learning. Sergey is part of the same research team as a couple of our previous guests in this series, Chelsea Finn and Pieter Abbeel, and if the response we’ve seen to those shows is any indication, you’re going to love this episode! Sergey’s research interests, and our discussion, focus in on include how robotic learning techniques can be used to allow machines to acquire autonomously acquire complex behavioral skills. We really dig into some of the details of how this is done and I found that our conversation filled in a lot of gaps for me from the interviews with Pieter and Chelsea. By the way, this is definitely a nerd alert episode! Notes for this show can be found at twimlai.com/talk/37

  • Smart Buildings & IoT with Yodit Stanton - TWiML Talk #36

    17/07/2017 Duración: 53min

    After a brief hiatus, the Industrial AI Series is making its triumphant return! Our guest this week is Yodit Stanton, a self-described Data Nerd, and the Founder & CEO of Opensensors.io. OpenSensors.io is a real-time data exchange for IoT, that enables anyone to publish and subscribe to real time open data in order to build higher order smart systems and better understand the world around them. Our discussion focuses on Smart Buildings and how they’re enabled by IoT and machine learning techniques. The notes for this show can be found at twimlai.com/talk/36

  • Intel Nervana Update + Productizing AI Research with Naveen Rao And Hanlin Tang - TWiML Talk #31

    05/07/2017 Duración: 38min

    I talked about Intel’s acquisition of Nervana Systems on the podcast when it happened almost a year ago, so I was super excited to have an opportunity to sit down with Nervana co-founder Naveen Rao, who now leads Intel’s newly formed AI Products Group, for the first show in our O'Reilly AI series. We talked about how Intel plans to extend its leadership position in general purpose compute into the AI realm by delivering silicon designed specifically for AI, end-to-end solutions including the cloud, enterprise data center, and the edge; and tools that let customers quickly productize and scale AI-based solutions. I also spoke with Hanlin Tang, an algorithms engineer at Intel’s AIPG, about two tools announced at the conference: version 2.0 of Intel Nervana’s deep learning framework Neon and Nervana Graph, a new toolset for expressing and running deep learning applications as framework and hardware-independent computational graphs. Nervana Graph in particular sounds like a very interesting project, not to mentio

  • Enhancing Customer Experiences With Emotional AI with Rana El Kaliouby - TWiML Talk #35

    05/07/2017 Duración: 33min

    My guest for this show is Rana el Kaliouby. Rana is co-founder and CEO of Affectiva. Affectiva, as Rana puts it, "is on a mission to humanize technology by bringing in artificial emotional intelligence". If you liked my conversation about Emotional AI with Pascale Fung from last year’s O’Reilly AI conference, you’re going to love this one. My conversation with Rana kind of picks up where the previous one left off, with a focus on how her company is bringing Artificial Emotional Intelligence services to market. Rana and her team have developed a machine learning / computer vision platform that can use the camera on any device to read your facial expressions in real time, then maps it to an emotional state. Using data science to mine the world’s largest emotion repository, Affectiva has collected over 5.5 million pieces of emotional expression data to date, from laptop, driving, cellular interactions. Understanding the importance of personal privacy, Rana and her Co-Founder Rosalind Wright Picard have vowed to

página 36 de 39